Water Efficiency Conference 2016

Waste heat recovery from showers: Case study of a university sport facility in the UK

Kenneth Ip & Kaiming She

University of Brighton, School of Environment and Technology

Cockcroft Building, Lewes Road,

Brighton, BN2 4GJ

Outline

- Background
- Methodology
- Experimental measurements
- System modelling and evaluation
- Analysis and results
- Conclusions

Background – waste heat recovery

- Operating principle is simple
- Claims to be highly effective
- Carbon reduction potential
- SAP accepted

Falmer Sports Pavilion

Methodology

- Establish heat transfer model
- Identify parameters to measure
- Experimental measurements
- Computer modelling
- Performance evaluation

Methodology – heat transfer model (1)

Effectiveness ε:

$$\varepsilon = \frac{\dot{Q}}{\dot{Q}_{max}}$$

- $\dot{Q}_{max} = C_{min} * (T_{h,in} T_{c,in})$
- $\dot{Q} = \varepsilon * C_{min} * (T_{h,in} T_{c,in})$

$$C_{min} = \min \begin{cases} \dot{m}_c * c_{p,c} \\ \dot{m}_h * c_{p,h} \end{cases}$$

University of Brighton

Methodology – heat transfer model (2)

The heat transfer between the hot fluid \dot{Q}_c and the cold fluid \dot{Q}_h are:

$$\dot{Q}_c = \dot{m}_c * c_{p,c} * (T_{c,in} - T_{c,out})$$

$$\dot{Q}_h = \dot{m}_h * c_{p,h} * (T_{h,in} - T_{h,out})$$

At each shower mixer the following mass and energy balance equations are applied:

$$\dot{m}_w = \dot{m}_h + \dot{m}_c$$

$$(\dot{m}_h * T_h) + (\dot{m}_c * T_{p,in}) = (\dot{m}_w * T_{eq})$$

Methodology – parameters to measure

Parameter	Unit
Mixer	
Shower mass water flow rate	kg/s
Shower water temperature	°C
Hot water temperature	°C
Inlet preheated water temperature	°C
Heat recovery pipe	
Inlet drain water temperature	°C
Outlet drain water temperature	°C
Inlet preheated water temperature	°C
Outlet preheated water temperature	°C

Experimental measurements

System simulation - model

- Dynamic system simulation model
- Graphically

 link the causal
 relationship
 between
 stocks and
 flow of the set
 variables

System simulation - outputs

System simulation – Scenarios and user profiles

_	mm 43.69			NARIO			- 11
-2	TEAMS:	T Footba	W W	T T	rungs, 1	Match for S	each) S
1				R-10			
2				R-15			
3							
4							
5		R-10			-	R-15	
6		R15				R15	
7	F10		F15		F-20	R15	
8	F15		F10		F20	R15	

			SCE	VARIO 2	ert.		
3	TEAMS:	2 Footba	ll, 1 Rugh	y (2 Trai	nings, 1 1	Match for	each)
	M	T	W	T	F	S	S
1				R-10			
2				R-15			
3	F-15		F-15		1		
4	F-10		F-10				
5		R-10				R-15	F-20
6		R15				R15	F20
7	F10		F15		F-20	R15	
8	F15		F-10		F20	R15	

			SCE	NARIO	3				
4	4 TEAMS: 2 Football, 2 Rugby (2 Trainings, 1 Match for each)								
	M	T	W	T	F	S	S		
1				R10	R10		R15		
2				R15	R15		R15		
3	F15		F-15				R15		
4	F10		F-10				R15		
5		R10				R15	F20		
6		R15				R15	F20		
7	F10	R15	F-15		F-20	R15			
8	F15	R10	F-10		F-20	R15			

6	6 TEAMS: 3 Football, 3 Rugby (2 Trainings, 1 Match for each)									
	M	T	W	T	F	S	S			
1				R10	R-10	R15	R15			
2				R15	R-15	R15	R15			
3	F15	R10	F15			R15	R15			
4	F-10	R15	F-10			R15	R15			
5	F-15	R10	F-15		F-20	R15	F20			
6	F-10	R15	F-10		F-20	R15	F20			
7	F-10	R15	F-15	R10	F20	R15				
8	F-15	R10	F-10	R15	F-20	R15				

Winutes

Results - measurements

Parameter	Symbol	Value	Unit
No of showers running		3	
Shower water flow rate	ṁ _w	0.2	kg/s
Hot water flow rate	ṁ _h	0.11	kg/s
Preheated water flow rate	ṁ _р	0.085	kg/s
Shower water temperature	T_{eq}	31.6	°C
Hot water temperature	T_h	50.6	°C
Inlet preheated water temperature	T_{p_in}	17.4	°C
Inlet Drain water temperature	T_{w_in}	25.6	°C
Outlet Drain water temperature	T_{w_out}	16.9	°C
Inlet cold water temperature	T_{c_in}	10.4	°C
Outlet preheated water temperature	T_{p_out}	20.3	kW
Effectiveness	3	0.65	/

Results – weekly savings

			Ene	rgy Recove	ered
	User profile	No. of sessions	Per session	Weekly	Weekly total
			kWh	kWh	kWh
	1	4	1.99	7.96	
Scenario 1	2	8	2.99	23.88	39.80
	3	2	3.98	7.96	
	1	6	1.99	11.94	
Scenario 2	2	10	2.99	29.85	57.71
	3	4	3.98	15.92	
	1	8	1.99	15.92	
Scenario 3	2	16	2.99	47.76	79.60
	3	4	3.98	15.92	
	1	12	1.99	23.88	
Scenario 4	2	24	2.99	71.64	119.40
	3	6	3.98	23.88	

Results - payback

	l locid	Scenario				
	Unit	1	2	3	4	
Annual savings @40 weeks	kWh	1592.00	2308.40	3184.00	4776.00	
Fuel cost (gas @£0.0166/kWh)	£	26.43	38.32	52.85	79.28	
Pay back @£960/unit	Year	36.33	25.05	18.16	12.11	
Pay back 1 unit for 2 shower rooms	Year	18.16	12.53	9.08	6.05	
Cost for return in investment 5 years	£	827.86	768.40	695.73	563.59	

Conclusions

- Low water flow shower heads significantly reduced the expected energy savings
- Long payback despite operating under favourable user profiles and scenarios
- More effective to reduce the number of heat exchangers
- Dynamic heat transfer data are needed for more accurate performance prediction
- Modelling can help to optimise the design and to predict the life cycle environmental performance
- Long durability and low maintenance still makes this kind of device an attractive low carbon option

Further and on-going work

- Life cycle cost assessment
- Life cycle environmental impact assessment
- Develop application for system evaluation in new and refurbishment projects

